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Abstract-The utility of line force fields in computer simulations of lattice defects is discussed.
These fields are shown to provide a facile method for introducing realistic flexible boundary
conditions on simulated atomic crystallites. The pertinent elastic fields for line force arrays
lying parallel to the tip of a planar crack are presented.

1. INTRODUCTION

In recent years there has been a growing interest in the computer simulation of a planar
crack progressing through a discrete atomic crystallite(I-4]. There has been a parallel
development in the study of straight dislocations in discrete crystallites[5-7]. The essence of
these treatments[7] is to divide the crystallite into three regions: region I which surrounds
the dislocation line or crack tip and is comprised of discrete atoms, region II which
completely surrounds region I and is considered to be an elastic continuum with virtual
atomic sites imbedded in it, and region III which surrounds region II and is an elastic
continuum.

Early computer models imposed so-called rigid boundary conditions on the boundary
between regions I and II; that is to say, that the atoms in region II were held fixed in the
positions given by the linear elastic model of the defect being simulated. Since rigid bound­
aries do not allow for volume changes that are experimentally known to occur around
defects, it soon became apparent that this type of boundary imposed extraneous stress
fields on atoms in region I, resulting in excessively large computed Peierls stresses[8] and
fracture stresses[2].

These difficulties were circumvented in later models[3-7] with flexible boundary condi­
tions permitting displacements produced by the nonlinear elastic field of the atomic force
law governing the discrete atomic interactions and allowing compatible equilibration of
forces and displacements at the boundary. The use of flexible boundary conditions produced
marked changes in the properties of the simulated entities; for example, changing dislocation
mobilites by orders of magnitude[8].

The flexible boundary methods described in[7], have been found to be most expedient and
accurate in treating dislocation problems. In this scheme, atomic relaxation in region I is
performed with its boundary constrained, net forces acting on atoms at the boundary are
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calculated, and displacements associated with such line forces are imposed on all three
regions using a Green's function formalism derived by Hirth[9]. The process is iterated until
equilibrium is approached asymptotically. Also, the dislocation calculations have shown that
the :flexible boundary method produces marked changes in defect configuration from the
result with rigid boundaries whether anisotropic or isotropic elasticity is used to describe the
line force displacement fields, but that the difference between the anisotropic and isotropic
cases is only a few percent[6, 7].

In view of the above discussion, and particularly in light of the fact that in[4] the wrong
cleavage plane was predicted for a-iron, the extension of the :flexible boundary methodology
to the crack problem is of interest. Although the effect of the image forces required to make
the crack faces stress free can, in principle, be handled numerically, our experience has
shown that convergence problems arise because the crack length dealt with in the computer
is too small. Therefore, it is desirable to have the linear elastic solution to the displacement
fields of line forces in the presence of a crack.

In principle, the anisotropic elastic solution can be obtained for this problem. Indeed,
the anisotropic solution for a dislocation in the presence of a planar crack has been pre­
sented[l 0]; however, except for special symmetry directions of the dislocation line. the
solution involves the numerical solution of a sixth order secular equation and then a line
integral for the field at each point of the medium. Since the isotropic result was found to
give a fairly accurate approximation of the anisotropic result in the dislocation case, and
because the isotropic case can be solved analytically. we present the isotropic result here.

The problem of primary interest is the field of a single line force in the presence of a
crack semi-infinite in length. However, we also present the result for the case of line force
couples without moment. The semi-infinite crack case is selected because it is the one
relevant to atomic simulations, i.e. near tip elastic fields are of primary importance. The
nonlinear field of a dislocation can be represented in terms of the latter defect[6, 7], so the
result for its field may be useful in treating the plastic relaxation at a crack tip by dislocation
motion.

1.1 Computational method

All cases of interest in the present work are two-dimensional elasticity problems. The
appropriate geometry for the problems is depicted. in Fig. I. The forces are uniformly
distributed along a line parallel to X3 with the crack plane normal to x 2 . The solution for

Fig. 1. Geometry for a planar crack interacting with line forces at r. Displacements are evaluated
at p. The crack tip is at the origin. Both the crack tip and the line forces are parallel to X3 .
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this type of problem can be obtained by the method of Rice[ll] and Muskhelishvili[12].
The pertinent representation in the complex plane is given in Fig. 2. The elastic interaction
field between the line forces and the crack in the plane stress and plane strain cases[ll]
(Le. the additional displacements produced by creating a crack in an otherwise homo­
geneous solid) can be expressed in terms of a function ¢(z) and its derivatives with respect to
z, q/ and q)", as follows[13]. The displacements are

U1 + iUl = [/(¢(z) - ¢(2) - (z z)¢'(z)]/2il

where il is the shear modulus, K = 3 - 4v for plane strain and K = (3 - v)/(l + v) for plane
stress, with v Poisson's ratio. A bar over a quantity has the usual meaning of complex
conjugate. The stresses are

all - iau = 1>'(z) + 1>'("£) + (z - z)¢"(z)
all = 4 Re[1>'(z)J - (In
(J33 = v(/711 + (Ju)

0'13 0'13 =0.

In the antiplane strain case[lI]
U 3 = Im(w(z)]/il

and
0'2.3 + ial3 = w'(z), other (Jij = O.

\
z

Fig. 2. Representalion of Fig. I in the complex plane.

(2)

(3)

(4)

1.2 Single line forces

First, we consider the line forces Fl and Fl' Any line force acting in the XIXl plane can be
decomposed into components along Xl and Xl and expressed in terms of the above sources by
superposition. For this case, contour integration of equation (91) of Rice(ll], followed by
integration with respect to z yields.

4>(z) = L In(zl /2 + zolll) + Q In(z112 + Zo lIZ) + K/{zoIJl(Zl /2 + ~o lIZ)} (5)
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L = -F1K(1 + iy)/2n(K + 1)

Q = F1(l + iy)/2n(K + 1)

K = F1 r sin (}(y + i)/2n(K + I)

y = F2 /F1 ·

The functions ¢'(z) and <p"(z) follow by differentiation and <p(z) is given by equation (5) with
z substituted for z. Explicitly, the desired displacements are

Ut = (F1K {lnPE _ (K + K-1)lnPD + Y(K
4n K + l)fl 2

Py sin (} ( (} - if> ) P sin (} (. (} - <p )+ cos -- + P cos (} - -- sm-- + P sin (}
D 2 .. D 2

PI sin (} ( (} + if> ) P sin (} (. () + <p .)- cos -- + P cos () +-- Sill-- + P Sill (}
KE 2 KE 2

'I sin if> ( () - (P) sin if> ( . . () - <P)+~ cos (P +Pcos-
2

- - D Sill <p -PSIll-
2
-.

I sin <p (' () + if» sin <p ( • • () + <P)
- -- cos if> + P cos -- + -- SIll if> + P Sill --

KE 2 KE 2

Py sin () sin <p [ . 8 - 3<p 2P' «() ) P 2 . 3() - <P]+ KD 2 sm~ + SIll - <p + SIll~

P sin 8 sin <p [ () - 3<p 30 - if>] ,
+ I(D2 cos~ + 2Pcos (0 - <p) + P 2 COS~ f

F t I( { (I( + 1(" 1) _1
U2 = 'I In pE - y In pD - (I( - I( )1'/

4n(K + l)fl 2

PI sin 0 ( 0 - if> ) P sin 0 ( () - <p )
+ D sin-

2
- +PsinO + -D- cos -2- +PcosO

Py sin () (. 8 + <p . ') P sin () ( () + <p )
- Sill-- + P SIll () - -- cos -- + P cos ()

KE 2 KE 2

}' sin <p ( () - if» sin <p ( 0 - <P)+ -D- sin <p - P sin -2- + D cos <p + P cos -2-

'I sin <p ( {) + (P) sin {) ( {) + <p \)
- -- sin <p + P sin -- - -- cos <p + P cos -2-

KE 2 KE

Py sin 8 sin <p [ () - 3<p 38 - <P1+ KD 2 cos -2- + 2P cos (8 - <p) + p2 cos -2-

P sin 8 sin <p [. 8 - 3<p. 2 . 3() - <P] }
KD2 SIll -2- + 2P Sill «() - <p) + P sm-2-.

(6)
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8+cp
D = 1 + p 2 + 2P cos -2-

8-cp
E = 1 + p 2 + 2P cos -2-

-1 sin (cpj2) - P sin (8j2)
11 = tan

cos (cpj2) + P cos (8j2)

P = (rjp)I/2
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where rand p are defined in Fig. 1. The above displacements provide the Green's function to
generate the displacement field of a set of forces bounding region I for a mode I or mode II
crack problem. The associated stress field is not ofdirect interest in the computer simulation
application, but can be found either by differentiation of equation (6) and use of Hooke's
law or from equations (2) and (5). In the case where ¢ and 8 approach n and where p and r

are large, the stress field agrees with that found by Hetenyi and Dundurs[l4] for the line
forces lying parallel to the planar free surface of a semi-infinite medium.

The field of the line forces themselves, that gives the total field when added to the above
interaction field, is[9]

F1 {K + 3u1 = - 4- --In p[l + p 4 - 2p2 cos (8 _ cp)]1/2
np K + I

I [2(sin cp - p2 sin 8)2 - y sin 2cp - yp4 sin 28 + 2yp2 sin (8 + cp)]}+-- -------------,----=-------'---'---'--~

K+I [1+p4_2p2cos(8-cp)]

F1 { 1\+3U2 = -4 - Y-- In p[1 + p4 - 2p2 cos(8 _ cp)]1/2
np 1\ + I

I [-2y(cos cp - p2 cos 8)2 + sin 2cp + p4 sin 28 - 2p2 sin(8 + cp)]}+-- ---------~---='---------'--'--.:.:.
K + I [I + p4 - 2p2 cos (8 - cp)] .

(7)

For a line force in the x 3-direction, of interest in mode III crack problems, the generating
function is

yielding the interaction displacement field

F 3
U3 = -4 In(DjE).

np

The field of the defect itself is[9]
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(8)

(9)

(10)
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1.3 Line force couples

In the plane strain case, the fields of line force couples without moment, also depicted in
Fig. 1, are of interest since they give a representation of the nonlinear field of a dislocation
and because they can be superposed to give the field of an edge dislocation itself. In this case
a line force F1 is applied at x I' X 2 ' a line force - F1 is applied at Xl - 6x l' X 2' and the limit
6x1 -> 0 is taken while keeping the moment M1 = F16x1 constant; a similar procedure yields

M 2 •

Proceeding as above, we find for the interaction field between an orthogonal pair of line
force couples at r and the crack tip, the generating function

201/2(Z1/2 + 2
0

1/2) Zo1/2(Z1/2 + 201/2 )

i Br sin f) i Br sin t.J
+ 203/2(Z1/2 + 2

0
1/2) + 2

0
( Z

1/ 2 + 2
0

1/2)2

with

cP(z)
A B

(II)

A = M 1(K + rxl( 2rx)/4n(K + 1)

8 = M 1(l - rx)/41(K + 1)

(J. = M2 /M1•

In this case the interaction displacement field is

1 { (KA + B) ( 0 <P ) (A + BK) ( () + <P )u1 = - - cos + P cos () + cos -- + P cos 0
2J1 pPD 2 pPE 2

BK sin 8 (. 38 - <P . ) BK sin ()
+ sm--- + P sm 28 + D2pPD 2 p

[
3D - q> ]

x sin (0 - q» + 2P sin~ + p 2 sin 28

B sin e( 38 + q> ) B sin () [ . . 30 + q> 2' "I- -- sin --- + P sin 20 - --2- sm (0 + q» + 2P sm--- + P sm 28
pPE 2 pE 2.

A sin <P [ 8 - 3<p. 2 . 38 - q>]
- pPD2 sin-

2
-+2Psm(0-<p)+P sm-

2
-

B sin <p [. 0 + 3q>. 2 . 30 + q>J
- --2- sm--- + 2P sm(8 + <p) + P sm --2-

pPE 2

B sin 0 sin <p [ 38 3<p 2 5f) - <pJ
- 2 cos + 2P cos (2t.J - <p) + P cos -2-

pPD 2

28 . f)' [ 30 3 50 <P]}- sl;D:
m

<p cos «() - 2<p) + 3Pcos 2 <p + 3p2 cos (20 - <p) + p 3 cos--T-

(12)
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u =~{_(KA-B)(Sine-qJ +PsinO) +(A-BK) (sin
O+

2

qJ + Psin 0)
1 2/1 pPD 2 ,pPE

BK sin 8 ( 38 qJ ) BK sin 0
- cos --- + P cos 28 - D2pPD 2 p

[
38 - qJ ]

x cos (0 - cp) + 2P cos~ + p2 cos 28

B sin 8 (' 38 + cP ) B sin 8+ -- cos --- + P cos 28 +-E2pPE 2 p

[
38+CP]x cos (8 + cp) + 2P cos -2- + p 2 cos 20

983

A sin cp [ 0 - 3cp 38 - cpJ
- ---Z cos + 2P cos(8 - cp) + p 2 cos -2-

pPD 2

Bsin cP [ 0 + 3cp 38 + CP]+ --2- cos --- + 2P cos(fJ + cp) + p 2 cos -'1-'
pPE 2 ..

B sin esin qJ [. 38 - 3cp 2P' (20 ) p Z ' 50 CP]+ pPD2 sm 2 + sm -cp + sm-2

2B sin () sin cp [ 38 - 3cp . , . . 58 - CP] \+ pD3 sin (0 -- 2cp) + 3P sin 2 + 3p2 sm !)O - cp) + p 3
sm -2- r

In this case the field of the defect itself is[6, 9]

M1(sin cP - p Z sin 0)u - .-_._-
1 - 2n,up[1 + p4 _ 2pZ cos «() - cp]

{

K- I 1 - a [cos 2cp + p 4 cos 20 - 2p2 cos (8 + cp)]\

K + 1 - K + 1 [1 + p4 2p2 cos(8 - cp)] J

M 1(sin cP pZ sin 0)
u - -----c::-'--:-:---:~---::::---:-:

Z - 2Jt/Lp[l + p 4 - 2pz cos (0 - cp)J

r
aCK - 1) _ I - a [cos 2cp + p4 cos 20 - 2p2 cos (8 + cp)]\.

. K+ 1 K + 1 [1 + p4 - 2 p2 cos((J - cp)] J

(3)

This expression completes the cases of interest in treating crack boundary value problems.
Some of the results presented in this paper have been incorporated into the general

boundary condition problem required to study crack behavior via computer modeling. The
method has been successful1y applied to a study of hydrogen embrittlement of a-iron[I 5].
The usage of this type technique is particularly important in the case where nonequilibrium
phenomena-such as unstable crack growth-are studied. In the case where equilibrium is
reached at the end of the computation, the crack faces will be stress free as a result of
relaxation and the present scheme is relevant only at the start of the computation.
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A6CTpaKT - 06cY)({,Ll,aeTCli none'lHOCfb noneH J1IfHeHHblX yCHnHll B Mop,cnHpOBaHHH Bbl­
'ieCnHTenbHoH MallIHHbl ,Ll,JIli ,Ll,e<peKToB ceTKH. YKa1brBaeTCll, 'fTO 31H nOJIli AalOT npHcnoc06­
JIeHHbIH. MeTO,Ll, ,Ll,JIli BBe)J,eHHlI peaJIbHbrX YHHBepCaJIhHhlX rpaHH'iHblX YCJ10BHH A.ll1 MOAe,lH­
P0BaHHbIX aTOMHbIX KpHCTaJIJ1Il.ToB. )J;alOTcli Ha)J,JIe)({ew.HC ynpyme nOJIli ,1lJIli pll,1la J1ImeHHblX
YCllJTIlH, JIe)({aII(HX napaJIJIeJIbHO KBepurHHe nnOCKOH TpeW.HHbI.


